
screed Documentation
Release 0.9+0.g1600a6c.dirty

Alex Nolley and Titus Brown

June 11, 2015

Contents

1 Basic Documentation 3
1.1 Notes on this document . 3
1.2 Introduction . 3
1.3 Getting Going . 3
1.4 Quick-Start . 3
1.5 Reading databases . 4
1.6 Writing Custom Sequence Parsers . 6
1.7 File formats as understood by screed . 8
1.8 FASTA <-> FASTQ Conversion . 9

2 screed examples 11
2.1 Basic Usage . 11

3 The screed developer documentation 13
3.1 Coding guidelines and code review checklist . 13
3.2 Release Documentation . 14

4 Release notes for past versions of screed 19
4.1 Release v0.5 . 19
4.2 Release v0.8 . 19

5 Known Issues 21
5.1 List of known issues . 21

6 Contributor Code of Conduct 23

7 License 25

8 Indices and tables 27

i

ii

screed Documentation, Release 0.9+0.g1600a6c.dirty

Copyright 2008-2012 Michigan State University

Authors Alex Nolley, C. Titus Brown

Contact ctb@msu.edu

License BSD

Contents:

Contents 1

mailto:ctb@msu.edu

screed Documentation, Release 0.9+0.g1600a6c.dirty

2 Contents

CHAPTER 1

Basic Documentation

1.1 Notes on this document

This is the default documentation for screed. Some doctests are included in the file ‘example.txt’. The examples in
this file are meant for humans only: they will not work in doctests.

1.2 Introduction

screed parses FASTA and FASTQ files, generates databases, and lets you query these databases. Values such as
sequence name, sequence description, sequence quality, and the sequence itself can be retrieved from these databases.

1.3 Getting Going

The following software packages are required to run screed:

• Python 2.4 or newer

• nose (for testing)

1.3.1 Installing

Use pip to download, and install Screed and its dependencies:

pip install screed

To run the optional tests type:

nosetests screed --attr '!known_failing'

1.4 Quick-Start

1.4.1 Reading FASTA/FASTQ files

At the Python prompt, type:

3

screed Documentation, Release 0.9+0.g1600a6c.dirty

>>> import screed
>>> with screed.open(filename) as seqfile:
>>> for read in seqfile:
... print read.name, read.sequence

Here, ‘filename’ can be a FASTA or FASTQ file, and can be uncompressed, gzipped, or bz2-zipped.

1.4.2 Creating a database from the API

From a Python prompt type:

>>> import screed
>>> screed.read_fasta_sequences('screed/tests/test.fa')

That command just parsed the FASTA file ‘screed/tests/test.fa’ into a screed-database named
‘screed/tests/test.fa_screed’. The screed database is independent from the text file it was derived from, so
moving, renaming or deleting the ‘screed/tests/test.fa’ file will not affect screed’s operation. To create a screed
database from a FASTQ file the syntax is similar:

>>> screed.read_fastq_sequences('screed/tests/test.fastq')

1.4.3 Creating a database from a script

If the screed module is in your PYTHONPATH, you can create a screed db from a FASTQ file at the shell:

$ python -m screed.fqdbm <fastq file>

Similarly, to create a screed db from a fasta file:

$ python -m screed.fadbm <fasta file>

where <fast* file> is the path to a sequence file.

screed natively supports FASTA and FASTQ database creation. If you have a new sequence you want screed to work
with, see the section below on Writing Custom Sequence Parsers.

1.5 Reading databases

The class ScreedDB is used to read screed databases, regardless of what file format they were derived from
(FASTA/FASTQ/hava/etc.). One reader to rule them all!

1.5.1 Opening

In the Python environment, import the ScreedDB class and load some databases:

>>> from screed import ScreedDB
>>> fadb = ScreedDB('screed/tests/test.fa')
>>> fqdb = ScreedDB('screed/tests/test.fastq')

Notice how you didn’t need to write the ‘_screed’ at the end of the file names? screed automatically adds that to the
file name if you didn’t.

4 Chapter 1. Basic Documentation

screed Documentation, Release 0.9+0.g1600a6c.dirty

1.5.2 Dictionary Interface

Since screed emulates a read-only dictionary interface, any methods that don’t modify a dictionary are supported:

>>> fadb.keys()
>>> fqdb.keys()

Each record in the database contains ‘fields’ such as name and sequence information. If the database was derived
from a FASTQ file, quality and optional annotation strings are included. Conversely, FASTA-derived databases have
a description field.

To retrieve the names of records in the database:

>>> names = fadb.keys()

Length of the databases are easily found:

>>> print len(fadb)
22
>>> print len(fqdb)
125

1.5.3 Retrieving Records

A record is the standard container unit in screed. Each has ‘fields’ that vary slightly depending on what kind of file
the database was derived from. For instance, a FASTQ-derived screed database has an id, a name, a quality score and
a sequence. A FASTA-derived screed database has an id, name, description and a sequence.

Retrieving whole records:

>>> records = []
>>> for record in fadb.itervalues():
... records.append(record)

What is returned is a dictionary of fields. The names of fields are keys into this dictionary with the actual information
as values. For example:

>>> record = fadb[fadb.keys()[0]]
>>> index = record['id']
>>> name = record['name']
>>> description = record['description']
>>> sequence = record['sequence']

What this does is retrieve the first record object in the screed database, then retrieve the index, name, description and
sequence from the record object using standard dictionary key -> value pairs.

1.5.4 Retrieving Partial Sequences (slicing)

screed supports the concept of retrieving a ‘slice’ or a subset of a sequence string. The motivation is speed: if you have
a database entry with a very long sequence string but only want a small portion of the string, it is faster to retrieve only
the portion than to retrieve the entire string and then perform standard Python string slicing.

By default, screed’s FASTA database creator sets up the ‘sequence’ column to support slicing. For example, if you
have an entry with name ‘someSeq’ which has a 10K long sequence, and you want a slice of the sequence spanning
positions 4000 to 4080:

1.5. Reading databases 5

screed Documentation, Release 0.9+0.g1600a6c.dirty

>>> seq = db['someSeq'].sequence
>>> slice = seq[4000:4080]

This is much faster than say:

>>> seq = str(db['someSeq'].sequence)
>>> slice = seq[4000:4080]

Because deep down, less information is being read off the disk. The str() method above causes the entire sequence to
be retrieved as a string. Then Python slicing is done on the string ‘seq’ and the subset stored in ‘slice’.

1.5.5 Retrieving Via Index

Sometimes you don’t care what the name of a sequence is; you’re only interested in its position in the database. In
these cases, retrieval via index is the method you’ll want to use:

>>> record = fqdb.loadRecordByIndex(5)

An index is like an offset into the database. The order records were kept in the FASTA or FASTQ file determines the
index in their resulting screed database. The first record in a sequence file will have an index of 0, the second, an index
of 1 and so on.

1.6 Writing Custom Sequence Parsers

screed is built to be adaptable to new kinds of file sequence formats. Included with screed are parsers for handling
FASTA and FASTQ sequence file types, though if you need screed to work with a new format, all you need to do is
write a new parser.

1.6.1 Field Roles

Each field in a screed database is assigned a role. These roles describe what kind of information is stored in their field.
Right now there are only 4 different roles in a screed database: the text role, the sliceable role, the indexed key role
and the primary key role. All roles are defined in the file: screed/DBConstants.py

The text role (DBConstants._STANDARD_TEXT) is the role most fields in a database will have. This role tells screed
that the associated field is storing standard textual data. Nothing special.

The sliceable role (DBConstants._SLICEABLE_TEXT) is a role that can be assigned to long sequence fields. screed’s
default FASTA parser defines the ‘sequence’ field with the sliceable role. When screed retrieves a field that has the
sliceable role, it builds a special data structure that supports slicing into the text.

The indexed key role (DBConstants._INDEXED_TEXT_KEY) is associated with exactly one of the fields in a screed
database. In screed’s FASTA and FASTQ parsers, this role is fulfilled by the ‘name’ field. This field is required
because it is the field screed tells sqlite to index when creating the database and it is the field used for name look-ups
when querying a screed database.

The primary key role (DBConstants._PRIMARY_KEY_ROLE) is a role automatically associated with the ‘id’ field
in each database. This field is always created with each screed database and always holds this role. You as a user of
screed won’t need to worry about this one.

6 Chapter 1. Basic Documentation

screed Documentation, Release 0.9+0.g1600a6c.dirty

1.6.2 General Parsing Function Format

create_db is the function central to the creation of screed databases. This function accepts a file path, a tuple of field
names and roles, and an iterator function. The file path describes where the screed database should go, the tuple
contains the names of fields and their associated roles and the iterator function yields records in a dictionary format.

This sub-section describes general steps for preparing and using screed with a custom sequence parser. Though they
don’t have to be, future sequence parsers should be located in the seqparse.py file for convenience. These steps will
be described in the context of working from the Python shell.

First import the create_db function:

>>> from screed import create_db

The create_db class handles the formatting of screed databases and provides a simple interface for storing sequence
data.

Next the database fields and roles must be specified. The fields tell screed the names and order of the data fields inside
each record. For instance, lets say our new sequence has types ‘name’, ‘bar’, and ‘baz’, all text. The tuple will be:

>>> fields = (('name', DBConstants._INDEXED_TEXT_KEY),
('bar', DBConstants._STANDARD_TEXT),
('baz', DBConstants._STANDARD_TEXT))

Notice how ‘name’ is given the indexed key role and bar and baz are given text roles? If, for instance, you know ‘baz’
fields can be very long and you want to be able to retrieve slices of them, you could specify fields as:

>>> fields = (('name', DBConstants._INDEXED_TEXT_KEY),
('bar', DBConstants._STANDARD_TEXT),
('baz', DBConstants._SLICEABLE_TEXT))

All screed databases come with an ‘id’ field, which is a sequential numbering order starting at 0 for the first record, 1
for the second, and so on. The names and number of the other fields are arbitrary with one restriction: one and only
one of the fields must fulfill the indexed key role.

Next, you need to setup an iterator function that will return records in a dictionary format. Have a look at the
‘fastq_iter’, ‘fasta_iter’, or ‘hava_iter’ functions in the screed/fastq.py, screed/fasta.py, and screed/hava.py files, re-
spectively for examples on how to write one of these. If you don’t know what an iterator function is, the documentation
on the Python website gives a good description: http://docs.python.org/library/stdtypes.html#iterator-types.

Once the iterator function is written, it needs to be instantiated. In the context of the built-in parsing functions, this
means opening a file and passing the file handle to the iterator function:

>>> seqfile = open('path_to_seq_file', 'rb')
>>> iter_instance = myiter(seqfile)

Assuming that your iterator function is called ‘myiter’, this sets up an instance of it ready to use with create_db.

Now the screed database is created with one command:

>>> create_db('path_to_screed_db', fields, iter_instance)

If you want the screed database saved at ‘path_to_screed_db’. If instead you want the screed database created in the
same directory and with a similar file name as the sequence file, its OK to do this:

>>> create_db('path_to_seq_file', fields, iter_instance)

create_db will just append ‘_screed’ to the end of the file name and make a screed database at that file path so the
original file won’t be overwritten.

When you’re done the sequence file should be closed:

1.6. Writing Custom Sequence Parsers 7

http://docs.python.org/library/stdtypes.html#iterator-types

screed Documentation, Release 0.9+0.g1600a6c.dirty

>>> seqfile.close()

1.6.3 Using the Built-in Sequence Iterator Functions

This section shows how to use the ‘fastq_iter’ and ‘fasta_iter’ functions for returning records from a sequence file.

These functions both take a file handle as the only argument and then return a dictionary for each record in the file
containing names of fields and associated data. These functions are primarily used in conjunction with the db_create()
function, but they can be useful by themselves.

First, import the necessary module and open a text file containing sequences. For this example, the ‘fastq_iter’ function
will be used:

>>> import screed.fastq
>>> seqfile = open('path_to_seqfile', 'rb')

Now, the ‘fastq_iter’ can be instantiated and iterated over:

>>> fq_instance = screed.fastq(seqfile)
>>> for record in fq_instance:
... print record.name

That will print the name of every sequence in the file. If instead you want to accumulate the sequences:

>>> sequences = []
>>> for record in fq_instance:
... sequences.append(record.sequence)

These iterators are the core of screed’s sequence modularity. If there is a new sequence format you want screed to
work with, all it needs is its own iterator.

1.6.4 Error checking in parsing methods

The existing FASTA/FASTQ parsing functions contain some error checking, such as making sure the file can be
opened and checking correct data is being read. Though screed doesn’t enforce this, it is strongly recommended to
include error checking code in your parser. To remain non-specific to one file sequence type or another, the underlying
screed library can’t contain error checking code of this kind. If errors are not detected by the parsing function, they
will be silently included into the database being built and could cause problems much later when trying to read from
the database.

1.7 File formats as understood by screed

While the screed database remains non-specific to file formats, the included FASTA and FASTQ parsers expect specific
formats. These parsers attempt to handle the most common attributes of sequence files, though they can not support
all features.

1.7.1 FASTQ

The FASTQ parsing function is read_fastq_sequences() and is located in the screed module.

The first line in a record must begin with ‘@’ and is followed by a record identifier (a name). An optional annotations
string may be included after a space on the same line.

8 Chapter 1. Basic Documentation

screed Documentation, Release 0.9+0.g1600a6c.dirty

The second line begins the sequence line(s) which may be line wrapped. screed defines no limit on the length of
sequence lines and no length on how many sequence lines a record may contain.

After the sequence line(s) comes a ‘+’ character on a new line. Some FASTQ formats require the first line to be
repeated after the ‘+’ character, but since this adds no new information to the record, read_fastq_sequences() will
ignore this if it is included.

The quality line(s) is last. Like the sequence line(s) this may be line wrapped. read_fastq_sequences() will raise an
exception if the quality and sequence strings are of unequal length. screed performs no checking for valid quality
scores.

1.7.2 FASTA

The FASTA parsing function is read_fasta_sequences() and is also located in the screed module.

The first line in a record must begin with ‘>’ and is followed with the sequence’s name and an optional description.
If the description is included, it is separated from the name with a space. Note that though the FASTA format doesn’t
require named records, screed does. Without a unique name, screed can’t look up sequences by name.

The second line begins the line(s) of sequence. Like the FASTQ parser, read_fasta_sequences() allows any number of
lines of any length.

1.8 FASTA <-> FASTQ Conversion

@CTB this doesn’t work?

As an extra nicety, screed can convert FASTA files to FASTQ and back again.

1.8.1 FASTA to FASTQ

The function used for this process is called ‘ToFastq’ and is located in the screed module. It takes the path to a screed
database as the first argument and a path to the desired FASTQ file as the second argument. There is also a shell
interface if the screed module is in your PYTHONPATH:

$ python -m screed.dump_to_fastq <path to fasta db> <converted fastq file>

The FASTA name attribute is directly dumped from the file. The sequence attribute is also dumped pretty much
directly, but is line wrapped to 80 characters if it is longer.

Any description line in the FASTA database is stored as a FASTQ annotation string with no other interpretation done.

Finally, as there is no quality or quality score in a FASTA file, a default one is generated. The generation of the quality
follows the Sanger FASTQ conventions. The score is 1 (ASCII: ‘”’) meaning a probability of about 75% that the read
is incorrect (1 in 4 chance). This PHRED quality score is calculated from the Sanger format: Q = -10log(p) where p
is the probability of an incorrect read. Obviously this is a very rough way of providing a quality score and it is only
intended to fill in the requirements of a FASTQ file. Any application needing a true measurement of the quality should
not rely on this automatic conversion.

1.8.2 FASTQ to FASTA

The function used for this process is called ‘toFasta’ and is located in the screed module. It takes the path to a screed
database as the first argument and a path to the desired FASTA file as the second argument. Like the ToFastq function
before, there is a shell interface to ToFasta if the screed module is in your PYTHONPATH:

1.8. FASTA <-> FASTQ Conversion 9

screed Documentation, Release 0.9+0.g1600a6c.dirty

$ python -m screed.dump_to_fasta <path to fastq db> <converted fasta file>

As above, the name and sequence attributes are directly dumped from the FASTQ database to the FASTA file with the
sequence line wrapping to 80 characters.

If it exists, the FASTQ annotation tag is stored as the FASTA description tag. As there is no equivalent in FASTA, the
FASTQ quality score is ignored.

10 Chapter 1. Basic Documentation

CHAPTER 2

screed examples

2.1 Basic Usage

Load screed, index the database, and return a dictionary-like object:

>>> import screed
>>> db = screed.read_fasta_sequences('../screed/tests/test.fa')

Get the list of sequence names, sort alphabetically, and look at the first one:

>>> names = db.keys()
>>> names.sort()
>>> names[0]
u'ENSMICT00000000730'

Retrieve that record:

>>> r = db[names[0]]
>>> print r.keys()
[u'description', u'id', u'name', u'sequence']

Print out the internal ID number and the name:

>>> print r.id
13
>>> print r.name
ENSMICT00000000730

11

screed Documentation, Release 0.9+0.g1600a6c.dirty

12 Chapter 2. screed examples

CHAPTER 3

The screed developer documentation

This section of the documentation is for people who are contributing (or would like to contribute to) the screed project
codebase, either by contributing code or by helping improve the documentation.

Please note that this project is released with a Contributor Code of Conduct. By participating in the development of
this project you agree to abide by its terms.

Contents:

3.1 Coding guidelines and code review checklist

This document is for anyone who want to contribute code to the screed project, and describes our coding standards
and code review checklist.

3.1.1 Coding standards

All plain-text files should have line widths of 80 characters or less unless that is not supported for the particular file
format.

Vim user can set the indentation with:

set expandtab
set shiftwidth=4
set softtabstop=4

We are a pure Python project and PEP 8 is our standard. The ‘pep8‘ and ‘autopep8‘ Makefile targets are helpful.

Code and documentation must have its spelling checked. Vim users can run:

:setlocal spell spelllang=en_us

Use]s and [s to navigate between misspellings and z= to suggest a correctly spelled word. zg will add a word as a
good word.

GNU aspell can also be used to check the spelling in a single file:

aspell check --mode $filename

13

http://www.python.org/dev/peps/pep-0008/

screed Documentation, Release 0.9+0.g1600a6c.dirty

3.1.2 Code Review

Please read 11 Best Practices for Peer Code Review.

See also Code reviews: the lab meeting for code and the PyCogent coding guidelines.

3.1.3 Checklist

Copy and paste the following into a pull request comment when it is ready for review:

- [] Is it mergable?
- [] Did it pass the tests?
- [] If it introduces new functionality, is it tested?
- [] Is it well formatted? Look at `make pep8`, `make diff_pylint_report`,

and `make doc` output. Use `make format` and manual fixing as needed.
- [] Is it documented in the ChangeLog?
- [] Was a spellchecker run on the source code and documentation after

changes were made?

Note that after you submit the comment you can check and uncheck the individual boxes on the formatted comment;
no need to put x or y in the middle.

3.2 Release Documentation

3.2.1 Introduction

This is the release documentation for releasing a new version of screed. This document is meant for screed release
managers. Michael R. Crusoe and C. Titus Brown have released screed in the past. Jake Fenton is the first to release
screed using this checklist.

3.2.2 Getting Started

1. Start with a clean checkout:

cd `mktemp -d`
git clone git@github.com:dib-lab/screed.git
cd screed

2. Install/update versioneer:

pip install versioneer
versioneer-installer

If there is a new version of versioneer:

git diff
./setup.py versioneer
git commit -p -m "new version of versioneer.py"
or abandon the changes
git checkout -- versioneer.py screed/_version.py screed/__init.py \

MANIFEST.in

3. Review the git logs since the previous release and that ChangeLog reflects the major changes:

14 Chapter 3. The screed developer documentation

http://smartbear.com/SmartBear/media/pdfs/WP-CC-11-Best-Practices-of-Peer-Code-Review.pdf
http://fperez.org/py4science/code_reviews.html
http://pycogent.org/coding_guidelines.html

screed Documentation, Release 0.9+0.g1600a6c.dirty

git log --minimal --patch \
`git describe --tags --always --abbrev=0`..HEAD

4. Review the issue list for any existing bugs that won’t be fixed in the release and ensure they’re documented in
doc/known-issues.txt

5. Verify that the build is clean: http://ci.ged.msu.edu/job/screed/

6. Set the new version number and release candidate:

new_version=1.1
rc=rc3

Tag the release candidate with the new version prefixed by the letter ‘v’:

git tag v${new_version}-${rc}
git push --tags git@github.com:dib-lab/screed.git

7. Test the release candidate:

cd ..
virtualenv testenv1
virtualenv testenv2
virtualenv testenv3
virtualenv testenv4

first we test the tag
cd testenv1
source bin/activate
pip install nose
git clone --depth 1 --branch v${new_version}-${rc} \

https://github.com/dib-lab/screed.git
cd screed
make install
nosetests screed --attr '!known_failing'
make test
python -c 'import screed; print screed.__version__' # double-check version number

Test via pip
cd ../../testenv2
source bin/activate
pip install nose
pip install -e \

git+https://github.com/dib-lab/screed.git@v${new_version}-${rc}#egg=screed
cd src/screed
make dist
make install
nosetests screed --attr '!known_failing'
python -c 'import screed; print screed.__version__'
cp dist/screed*tar.gz ../../../testenv3

test if the dist made in testenv2 is complete enough to build another
functional dist

cd ../../../testenv3
source bin/activate
pip install nose
pip install screed*tar.gz
nosetests screed --attr '!known_failing'

3.2. Release Documentation 15

http://ci.ged.msu.edu/job/screed/

screed Documentation, Release 0.9+0.g1600a6c.dirty

python -c 'import screed; print screed.__version__'
tar xzf screed*tar.gz
cd screed*
make dist
make test

8. Publish the new release on the testing PyPI server. You will need to change your PyPI credentials as documented
here: https://wiki.python.org/moin/TestPyPI. You may need to re-register:

python setup.py register --repository test

Now, upload the new release:

python setup.py sdist upload -r test

Test the PyPI release in a new virtualenv:

cd ../../testenv4
source bin/activate
pip install -U setuptools
pip install nose
pip install -i https://testpypi.python.org/pypi --pre --no-clean screed
nosetests screed --attr '!known_failing'
python -c 'import screed; print screed.__version__'
cd build/screed
./setup.py nosetests --attr '!known_failing'

9. Do any final testing (acceptance tests, etc.) Note that the acceptance tests for screed are to run the khmer
automated tests with the new version of screed installed and then to run the khmer acceptance tests.

10. Make sure any release notes are merged into doc/release-notes/. Release notes should be written in the .md
format to satisfy the requirements for GitHub release notes. The convert-release-notes make target can be used
to generate .rst files from the .md notes.

3.2.3 How to make a final release

When you have a thoroughly tested release candidate, cut a release like so:

1. Create the final tag and publish the new release on PyPI (requires an authorized account)

cd ../../../screed
git tag v${new_version}
python setup.py register sdist upload

2. Delete the release candidate tag and push the tag updates to GitHub:

git tag -d v${new_version}-${rc}
git push git@github.com:dib-lab/screed.git
git push --tags git@github.com:dib-lab/screed.git

3. Add the release on GitHub, using the tag you just pushed. Name it “Version X.Y.Z” and copy/paste in the release
notes.

4. Update the Read the Docs to point to the new version. Visit https://readthedocs.org/builds/screed/ and ‘Build
Version: master’ to pick up the new tag. Once that build has finished check the “Activate” box next to the new
version at https://readthedocs.org/dashboard/screed/versions/ under “Choose Active Versions”. Finally change
the default version at https://readthedocs.org/dashboard/screed/advanced/ to the new version.

5. Delete any RC tags created:

16 Chapter 3. The screed developer documentation

https://wiki.python.org/moin/TestPyPI
https://readthedocs.org/builds/screed/
https://readthedocs.org/dashboard/screed/versions/
https://readthedocs.org/dashboard/screed/advanced/

screed Documentation, Release 0.9+0.g1600a6c.dirty

git tag -d ${new_version}-${rc}
git push origin :refs/tags/${new_version}-${rc}

6. Tweet about the new release

7. Send email including the release notes to khmer@lists.idyll.org and khmer-announce@lists.idyll.org

3.2.4 Notes on this document

This is the procedure for cutting a new release of screed. It has been adapted from the release documentation for the
khmer project, found at http://khmer.readthedocs.org/en/v1.1/release.html.

3.2. Release Documentation 17

mailto:khmer@lists.idyll.org
mailto:khmer-announce@lists.idyll.org
http://khmer.readthedocs.org/en/v1.1/release.html

screed Documentation, Release 0.9+0.g1600a6c.dirty

18 Chapter 3. The screed developer documentation

CHAPTER 4

Release notes for past versions of screed

Contents:

4.1 Release v0.5

We are proud to announce the release of screed v0.5. screed is a database engine capable of storing and retriving
short-read sequence data. screed is designed to be fast and adaptable to different sequence file formats. This marks
the first release of screed which we consider stable and complete.

Features:

• Read sequence data from FASTA/FASTQ files into screed databases

• Save screed databases back to FASTA/FASTQ files

• Lookup sequence data by index (offset) or name

• Native support for sequence substring slicing

• Convert between FASTA <-> FASTQ file formats

screed is written entirely in Python and uses the Sqlite database for backend storage. screed can be downloaded from
the public git repository: http://github.com/acr/screed.git

screed is licensed under the BSD license which can be viewed in the doc/LICENSE.txt file.

4.2 Release v0.8

We are pleased to announce the release of Screed v0.8. Screed is a database engine capable of storing and retrieving
short-read sequence data and is designed to be fast and adaptable to different sequence file formats.

This version of Screed contains developer documentation for contributing to the Screed project and a code
of conduct for interacting with other contributors and project maintainers. Documentation is available at
http://screed.readthedocs.org/en/v0.8/

4.2.1 New items of note:

This release successfully installs and passes its unit tests on Ubuntu 14.04 and the latest release of Mac OS X 10
“Yosemite”. It also passes the khmer acceptance tests as per the eelpond testing protocol.

19

http://github.com/acr/screed.git
http://screed.readthedocs.org/en/v0.8/
https://github.com/dib-lab/literate-resting/blob/master/kp/README.txt

screed Documentation, Release 0.9+0.g1600a6c.dirty

This release of screed has renamed the ‘accuracy’ attribute of read records to ‘quality;’ this API change will need to
be adopted by all users wanting to upgrade to this version. Unlike the khmer project, Screed is not currently under
semantic versioning. It will be with the 1.0 release.

• Screed now has automatic compression detection via magic bit sniffing for gzip and bzip2 compressed files
(from @mr-c in dib-lab/khmer#432)

• Screed now supports streaming of uncompressed FASTA and FASTQ formatted nucleotide sequence data. bzip2
compressed FASTA and FASTQ formatted nucleotide sequence data can also be streamed but not gzip com-
pressed FASTA and FASTQ formatted nucleotide sequence data. (from @mr-c, see dib-lab/khmer#633)

• Screed now has a Changelog, developer documentation and a code of conduct (from @ctb, @mr-c, @bocajnot-
nef in dib-lab/khmer#625)

• Versions are now autogenerated using git tags via Versioneer (from @bocajnotnef in cadceb5)

• Documentation is now autogenerated using Doxygen (from @mr-c in d8ed05b)

4.2.2 Notable bugs fixed/issues closed:

• A khmer script was not accepting reads on the stdin dib-lab/khmer#633 by @mr-c

• screed returning the wrong version and breaking dev installs dib-lab/khmer#803 by @mr-c

4.2.3 Known Issues

These are all pre-existing

• Screed records cannot be sliced requiring un-Pythonic techniques to achieve the same behavior. This will be
included in a future release. This is being tracked in dib-lab/khmer#768

• Screed self-tests do not use a temporary directory which causes tests run from package-based installs to fail.
This is being tracked in dib-lab/khmer#748

• Screed does not support gzip file streaming. This is an issue with Python 2.x and will likely not be fixed in
future releases. This is being tracked in dib-lab/khmer#700

• Screed is overly tolerant of spaces in fast{a,q} which is against spec. This is being tracked in dib-lab/khmer#108

4.2.4 Contributors

@bocajnotnef @mr-c @brtaylor92 @wrightmhw @kdmurray91 @luizirber @ctb

20 Chapter 4. Release notes for past versions of screed

CHAPTER 5

Known Issues

This document details the known issues in the current release of screed. All issues for screed are tracked at
https://github.com/dib-lab/khmer/labels/screed

5.1 List of known issues

Screed does not support gzip file streaming. This is an issue with Python 2.x and will likely not be fixed in future
releases. https://github.com/dib-lab/khmer/issues/700

Screed is overly tolerant of spaces in fast{q,a} which is against spec. https://github.com/dib-lab/khmer/issues/108

21

https://github.com/dib-lab/khmer/labels/screed
https://github.com/dib-lab/khmer/issues/700
https://github.com/dib-lab/khmer/issues/108

screed Documentation, Release 0.9+0.g1600a6c.dirty

22 Chapter 5. Known Issues

CHAPTER 6

Contributor Code of Conduct

As contributors and maintainers of this project, we pledge to respect all people who contribute through reporting
issues, posting feature requests, updating documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in this project a harassment-free experience for everyone, regardless of level
of experience, gender, gender identity and expression, sexual orientation, disability, personal appearance, body size,
race, age, or religion.

Examples of unacceptable behavior by participants include the use of sexual language or imagery, derogatory com-
ments or personal attacks, trolling, public or private harassment, insults, or other unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct. Project maintainers or contributors who
do not follow the Code of Conduct may be removed from the project team.

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by emailing khmer-
project@idyll.org which only goes to C. Titus Brown and Michael R. Crusoe. To report an issue involving either
of them please email Judi Brown Clarke, Ph.D. the Diversity Director at the BEACON Center for the Study of Evolu-
tion in Action, an NSF Center for Science and Technology.

This Code of Conduct is adapted from the Contributor Covenant, version 1.0.0, available at http://contributor-
covenant.org/version/1/0/0/

23

mailto:khmer-project@idyll.org
mailto:khmer-project@idyll.org
mailto:jbc@egr.msu.edu
http://contributor-covenant.org
http://contributor-covenant.org/version/1/0/0/
http://contributor-covenant.org/version/1/0/0/

screed Documentation, Release 0.9+0.g1600a6c.dirty

24 Chapter 6. Contributor Code of Conduct

CHAPTER 7

License

Copyright (c) 2008-2015, Michigan State University All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the author nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

25

screed Documentation, Release 0.9+0.g1600a6c.dirty

26 Chapter 7. License

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

	Basic Documentation
	Notes on this document
	Introduction
	Getting Going
	Quick-Start
	Reading databases
	Writing Custom Sequence Parsers
	File formats as understood by screed
	FASTA <-> FASTQ Conversion

	screed examples
	Basic Usage

	The screed developer documentation
	Coding guidelines and code review checklist
	Release Documentation

	Release notes for past versions of screed
	Release v0.5
	Release v0.8

	Known Issues
	List of known issues

	Contributor Code of Conduct
	License
	Indices and tables

